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1. Introduction

A complete lattice is algebraic provided every element is a join of compact
elements. Algebraic lattices arise naturally in different contexts. For example,
the lattice of congruences of any algebra is algebraic, and up to isomorphism,
every algebraic lattice arises this way (see, e.g., [15]). It is a well-known result of
Nachbin [30] (see also [14]) that algebraic lattices are exactly the ideal lattices
of join-semilattices. If an algebraic lattice L is distributive, then the infinite
distributive law a ∧ ∨

S =
∨{a ∧ s | s ∈ S} holds, and hence L is a frame.

Such frames are known as algebraic frames and have been the subject of study
in pointfree topology and domain theory (see, e.g., [20,31]).

There is a well-developed duality theory for the category AlgFrm of alge-
braic frames and its various subcategories such as the categories of arithmetic
frames (also known as M-frames), coherent frames, and Stone frames. Indeed,
a frame L is algebraic iff it is the frame of opens of a compactly based sober
space X [20, p. 423]. In addition, L is arithmetic iff X is stably compactly
based, L is coherent iff X is spectral, and L is a Stone frame iff X is a Stone
space (see Section 2 for details).

The duality theory for algebraic frames is a restriction of the well-known
Hofmann-Lawson duality [24]. We recall (see, e.g., [31, p. 135]) that a frame
L is continuous if the way-below relation � is approximating. In addition, L
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Figure 1. Inclusion relationships between categories of con-
tinuous and algebraic frames

is stably continuous if � is stable (a � b, c implies a � b ∧ c) and L is stably
compact if moreover L is compact. We also recall (see, e.g., [31, p. 89]) that
L is regular if the well-inside relation ≺ is approximating. A regular frame
L is compact regular if it is furthermore compact. Since in compact regular
frames the way-below and well-inside relations coincide, every compact regular
frame is stably compact. Figure 1 describes the correspondence between various
categories of continuous and algebraic frames, where the categories are defined
in Tables 1 and 2 and � stands for “is a full subcategory of.”

By the well-known Priestley duality [32,33], the category of bounded
distributive lattices is dually equivalent to the category of Priestley spaces.
Pultr and Sichler [34] provided a restricted version of Priestley duality for
the category Frm of frames and frame homomorphisms. This line of research
was further developed by several authors (see, e.g., [35,10,8,9,1,2]). In [12],
we obtained Priestley duality for ConFrm and its subcategories listed in the
first row of Figure 1. The resulting (dual) equivalences are outlined in Figure 5.
The aim of this paper is to further study Priestley duality for AlgFrm and its
subcategories listed in the second row of Figure 1. This requires characterizing
Priestley spaces of algebraic, arithmetic, coherent, and Stone frames.

The paper is organized as follows. In Section 2, we describe the above
categories of continuous and algebraic frames, as well as the corresponding

Table 1. Categories of continuous frames

Category Objects Morphisms

ConFrm Continuous frames Proper frame homomorphisms
StCFrm Stably continuous frames Proper frame homomorphisms
StKFrm Stably compact frames Proper frame homomorphisms
KRFrm Compact regular frames Frame homomorphisms

Table 2. Categories of algebraic frames

Category Objects Morphisms

AlgFrm Algebraic frames Coherent frame homomorphisms
AriFrm Arithmetic frames Coherent frame homomorphisms
CohFrm Coherent frames Coherent frame homomorphisms
StoneFrm Stone frames Frame homomorphisms
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categories of locally compact and compactly based sober spaces. Section 3 re-
calls Priestley duality for various categories of continuous frames. In Section 4,
we characterize Priestley spaces of algebraic frames. Consequently, we obtain
a new proof of the duality between AlgFrm and KBSob. Finally, in Section 5,
we characterize Priestley spaces of arithmetic, coherent, and Stone frames.
In each case, this yields a new proof of the duality between the correspond-
ing categories of algebraic frames and compactly based spaces. We conclude
the paper by connecting Priestley spaces of coherent frames and Stone frames
to Priestley duality for bounded distributive lattices and Stone duality for
boolean algebras.

2. Continuous and algebraic frames

A frame is a complete lattice L satisfying the join-infinite distributive law

a ∧
∨

S =
∨

{a ∧ s | s ∈ S}
for every a ∈ L and S ⊆ L. A frame homomorphism is a map between frames
that preserves finite meets and arbitrary joins. Let Frm be the category of
frames and frame homomorphisms. A frame is spatial if completely prime filters
separate elements of L. Let SFrm be the full subcategory of Frm consisting of
spatial frames.

As usual, we write � for the way-below relation in a frame L and recall
that a � b provided for each S ⊆ L we have b ≤ ∨

S implies a ≤ ∨
T for some

finite T ⊆ S. We call a ∈ L compact if a � a and L compact if its top element
is compact. We write K(L) for the collection of compact elements of L.

We also recall that the well-inside relation on L is defined by a ≺ b if
a∗ ∨ b = 1, where a∗ :=

∨{x ∈ L | a ∧ x = 0} is the pseudocomplement of
a. An element a ∈ L is complemented if a ≺ a. Let C(L) be the collection of
complemented elements of L. It is well known that if L is compact, then a ≺ b
implies a � b; and if L is regular, then a � b implies a ≺ b. Thus, in compact
regular frames, the two relations � and ≺ coincide, and hence K(L) = C(L).

A frame homomorphism h : L → M between continuous frames is proper
if it preserves �; that is, a � b implies h(a) � h(b) for all a, b ∈ L. Let ConFrm
be the category of continuous frames and proper frame homomorphisms. We
write StCFrm and StKFrm for the full subcategories of ConFrm consisting of
stably continuous and stably compact frames, respectively. We also let KRFrm
be the full subcategory of Frm consisting of compact regular frames. Since every
frame homomorphism between compact regular frames is proper, KRFrm is a
full subcategory of StKFrm.

Definition 2.1.
(1) ([31, p. 142]) A frame L is algebraic if a =

∨{b ∈ K(L) | b ≤ a} for all
a ∈ L.

(2) ([29, p. 64]) A frame homomorphism h : L → M is coherent if a ∈ K(L)
implies h(a) ∈ K(M).
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(3) Let AlgFrm be the category of algebraic frames and coherent frame ho-
momorphisms.

Remark 2.2. It is easy to see that every algebraic frame is continuous, and that
a frame homomorphism between coherent frames is coherent iff it is proper.
Consequently, AlgFrm is a full subcategory of ConFrm.

Definition 2.3.
(1) A frame L is arithmetic if it is algebraic and � is stable.
(2) Let AriFrm be the full subcategory of AlgFrm consisting of arithmetic

frames.

Remark 2.4.
(1) In [20] a lattice is called arithmetic if the binary meet of compact elements

is compact. For algebraic lattices this is equivalent to � being stable (see,
e.g. [20, Proposition I−4.8]).

(2) Arithmetic frames are also called M-frames; see, e.g., [25,13].

Definition 2.5.
(1) ([29, p. 63–64]) A frame L is coherent if L is arithmetic and compact.
(2) Let CohFrm be the full subcategory of AriFrm consisting of coherent

frames.

The next definition is well known (see, e.g., [29,5,27]). We thank Joanne
Walters-Wayland for pointing out to us that the terminology of Stone frames
originated from Banaschewski’s University of Cape Town lecture notes (1988).

Definition 2.6.
(1) A frame L is zero-dimensional if a =

∨{b ∈ C(L) | b ≤ a} for all a ∈ L.
(2) A Stone frame is a compact zero-dimensional frame.
(3) Let StoneFrm be the full subcategory of Frm consisting of Stone frames.

Remark 2.7. Clearly StoneFrm is a full subcategory of KRFrm. Moreover, since
every frame homomorphism preserves ≺ and in Stone frames ≺ coincides with
�, we have that StoneFrm is a full subcategory of CohFrm.

The categories of algebraic and continuous frames relate to each other as
shown in Figure 1. We next turn our attention to the corresponding categories
of topological spaces. The following definitions are well known (see, e.g., [20,
pp. 43–44]). A closed subset of a topological space X is irreducible if it cannot
be written as the union of two proper closed subsets. We call X sober if each
irreducible subset is the closure of a unique point in X, and locally compact if
for every open set U and x ∈ U there are an open set V and a compact set K
such that x ∈ V ⊆ K ⊆ U .

In view of [20, Lemma VI−6.21], we call a continuous map f : X → Y
between locally compact sober spaces proper if f−1(K) is compact for each
compact saturated set K ⊆ Y . Let LKSob be the category of locally compact
sober spaces and proper maps between them.

A topological space X is coherent if the intersection of two compact
saturated sets is compact ([20, p. 474]), and X is stably locally compact if it
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Table 3. Categories of locally compact sober spaces

Category Objects Morphisms

LKSob Locally compact sober spaces Proper maps
StLKSp Stably locally compact spaces Proper maps
StKSp Stably compact spaces Proper maps
KHaus Compact Hausdorff spaces Continuous maps

is locally compact, sober, and coherent. Let StLKSp be the full subcategory of
LKSob consisting of stably locally compact spaces.

A compact stably locally compact space is a stably compact space ([20,
p. 476]). We write StKSp for the full subcategory of StLKSp consisting of stably
compact spaces. Also, we denote by KHaus the category of compact Hausdorff
spaces and continuous maps. Since a continuous map between compact Haus-
dorff spaces is proper, KHaus is a full subcategory of StKSp. Table 3 lists the
above categories of locally compact sober spaces.

We now shift our focus to compactly based spaces. We recall that a
continuous map f : X → Y is coherent if f−1(U) is compact for each compact
open U ⊆ Y .

Definition 2.8.
(1) ([16, p. 2063]) A topological space X is compactly based if it has a basis of

compact open sets. Let KBSob be the category of compactly based sober
spaces and coherent maps.

(2) A compactly based space X is stably compactly based if it is sober and
the intersection of two compact opens is compact. Let StKBSp be the full
subcategory of KBSob consisting of stably compactly based spaces.

(3) ([22, p. 43]) A stably compactly based space X is a spectral space if it
is compact. Let Spec be the full subcategory of StKBSp consisting of
spectral spaces.

(4) ([29, p. 70]) A Stone space is a zero-dimensional compact Hausdorff space.
Let Stone be the category of Stone spaces and continuous maps.

Table 4 lists the categories of compactly based sober spaces of Definition
2.8.

Remark 2.9. It is easy to see that Stone is a full subcategory of Spec (see, e.g.,
[29, p. 71]). To see that KBSob is a full subcategory of LKSob, it is sufficient
to observe that a continuous map between compactly based sober spaces is
coherent iff it is proper. For this it is enough to observe that in a compactly
based space X, every compact saturated set is an intersection of compact
opens. To see this, let K ⊆ X be compact saturated. It suffices to show that
for each x 
∈ K there is a compact open U containing K and missing x. For each
y ∈ K there is a compact open Uy such that y ∈ Uy and x 
∈ Uy. Therefore,
K ⊆ ⋃{Uy | y ∈ K}. By compactness of K and the fact that a finite union
of compact sets is compact, there is a compact open U such that K ⊆ U and
x 
∈ U .
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Table 4. Categories of compactly based sober spaces

Category Objects Morphisms

KBSob Compactly based sober spaces Coherent maps
StKBSp Stably compactly based spaces Coherent maps
Spec Spectral spaces Coherent maps
Stone Stone spaces Continuous maps

The diagram in Figure 2 gives the correspondence between various cate-
gories of locally compact and compactly based sober spaces.

There is a well-known dual adjunction between the categories Top and
Frm, which restricts to a dual equivalence between the categories Sob and SFrm
(see, e.g., [29, Section II−1]). Further restrictions of this equivalence yield the
following well-known duality results for continuous frames:

Theorem 2.10.
(1) ConFrm is dually equivalent to LKSob.
(2) StCFrm is dually equivalent to StLKSp.
(3) StKFrm is dually equivalent to StKSp.
(4) KRFrm is dually equivalent to KHaus.

We thus arrive at the diagram in Figure 3, where � represents dual
equivalence.

Remark 2.11. Theorem 2.10(1) is known as Hofmann-Lawson duality [24] (see
also [20, Proposition V−5.20]). The origins of Theorems 2.10(2) and 2.10(3)
can be traced back to [21,28,36,4] (see also [20, Section VI−7.4]). Finally,
Theorem 2.10(4) is known as Isbell duality [26] (see also [6] or [29, Section
VII−4]).

We next describe the duality results for algebraic frames. One of the ear-
liest references is probably [23, Theorem 5.7] (see also [20, p. 423]), where the

Figure 2. Inclusion relationships between categories of lo-
cally compact and compactly based sober spaces

Figure 3. Correspondence between categories of continuous
frames and locally compact spaces
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Figure 4. Correspondence between categories of algebraic
frames and compactly based spaces

dualities for AlgFrm, AriFrm, and CohFrm are stated. The duality for CohFrm
is also described in [3,4] and [29, Section II.3]. This further reduces to the
duality for StoneFrm (see, e.g., [5] or [27, Chapter IV]).

Theorem 2.12.
(1) AlgFrm is dually equivalent to KBSob.
(2) AriFrm is dually equivalent to StKBSp.
(3) CohFrm is dually equivalent to Spec.
(4) StoneFrm is dually equivalent to Stone.

We thus arrive at the diagram in Figure 4.

Remark 2.13. The proof of Theorem 2.12 can easily be deduced from Theorem
2.10 and the fact that AlgFrm and KBSob are full subcategories of ConFrm and
LKSob, respectively. But it is easy to give a direct proof of Theorem 2.12 which
does not rely on Theorem 2.10. For this it is sufficient to observe that every
algebraic frame is spatial. Let L be an algebraic frame. Then Scott-open filters
separate elements of L. To see this, if a 
≤ b, then there is k ∈ K(L) such that
k ≤ a but k 
≤ b. Thus, ↑k is a Scott-open filter containing a and missing b.
It is left to observe that the Prime Ideal Theorem implies that L is spatial iff
Scott-open filters separate elements of L (see, e.g., [17, p. 265] or [11, Corollary
5.9(2)]).

3. Priestley duality for continuous frames

As we pointed out in the introduction, Pultr and Sichler [34] restricted Priest-
ley duality for bounded distributive lattices to the category of frames. In this
section we briefly recall Pultr-Sichler duality and its restriction to various cat-
egories of continuous frames.

Definition 3.1.
(1) A Priestley space is a Stone space X with a partial order ≤ such that

clopen upsets separate points.
(2) An L-space (localic space) is a Priestley space such that cl U is an open

upset for each open upset U of X.
(3) An L-morphism is a continuous order-preserving map f : X → Y between

L-spaces such that f−1 cl U = cl f−1U for every open upset U of Y .
(4) Let LPries be the category of L-spaces and L-morphisms.

Theorem 3.2 (Pultr-Sichler [34, Corollary 2.5]). Frm is dually equivalent to
LPries.
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Remark 3.3. The functors X : Frm → LPries and L : LPries → Frm estab-
lishing Pultr-Sichler duality are the restrictions of the functors establishing
Priestley duality. We recall that the Priestley space of a frame L is the set
XL of prime filters of L ordered by inclusion and topologized by the subba-
sis {ϕ(a) | a ∈ L} ∪ {ϕ(a)c | a ∈ L}, where ϕ is the Stone map given by
ϕ(a) = {x ∈ XL | a ∈ x} for each a ∈ L. The functor X sends a frame L
to its Priestley space XL and a frame homomorphism h : L → M to the L-
morphism h−1 : XM → XL. The functor L sends an L-space X to the frame
ClopUp(X) of clopen upsets of X and an L-morphism f : X → Y to the frame
homomorphism f−1 : ClopUp(Y ) → ClopUp(X).

Remark 3.4. Since frames are complete Heying algebras (see, e.g., [31, p. 332]),
there is a close connection between Pultr-Sichler duality and Esakia duality for
Heyting algebras [18]. We recall that an Esakia space is a Priestley space with
the additional property that the partial order ≤ is continuous (the downset of
each clopen is clopen). A Priestley space is an Esakia space iff the closure cl U
of each open upset U is an upset (see, e.g, [8, Lemma 4.2]). Thus, L-spaces
are those Esakia spaces in which cl U is not just an upset but an open upset.
Such Esakia spaces are called extremally order-disconnected as they generalize
extremally disconnected Stone spaces. Thus, a Priestley space is an L-space iff
it is an extremally order-disconnected Esakia space.

We next characterize Priestley spaces of spatial frames.

Definition 3.5. Let X be an L-space.
(1) The set Y := {y ∈ X | ↓y is clopen} is called the spatial part of X.
(2) We call X an SL-space if Y is dense in X.
(3) Let SLPries be the full subcategory of LPries consisting of SL-spaces.

Let L be a frame. Recall (see, e.g., [31, p. 15]) that a point of L is a
completely prime filter, and that the set pt(L) of points of L is topologized by
{ϕ(a) ∩ pt(L) | a ∈ L}. We will refer to pt(L) as the space of points of L.

Remark 3.6. Let X be an L-space and Y the spatial part of X.
(1) We view Y as a topological space, where V ⊆ Y is open iff V = U ∩ Y

for some U ∈ ClopUp(X). If X is the Priestley space of a frame L, then
the spatial part Y of X is exactly the space of points of L (see, e.g., [1,
Lemma 5.3(1)]).

(2) If X is an SL-space, then cl(U ∩ Y ) = U for each U ∈ ClopUp(X).
Therefore, the assignment U �→ U ∩ Y is an isomorphism from the poset
of clopen upsets of X to the poset of open sets of Y . This will be utilized
in what follows.

Theorem 3.7 ([12, Section 4]). SLPries is equivalent to Sob and dually equiv-
alent to SFrm.

Remark 3.8.
(1) The dual equivalence between SFrm and SLPries is obtained by restricting

the functors establishing Pultr-Sichler duality.
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(2) The equivalence between SLPries and Sob is obtained as follows. Let
Y : LPries → Sob be the functor that sends an L-space X to to its spatial
part Y , and an L-morphism f : X1 → X2 to its restriction g : Y1 → Y2.
Then Y restricts to an equivalence between SLPries and Sob (see, e.g.,
[12, Corollary 4.19]).

(3) As an immediate consequence of Theorem 3.7, we obtain the well-known
duality between SFrm and Sob.

We now turn our attention to Priestley spaces of continuous frames.

Definition 3.9. Let X be an L-space.
(1) For U, V ∈ ClopUp(X), define V � U provided for each open upset W

of X we have U ⊆ cl W implies V ⊆ W .
(2) For U ∈ ClopUp(X), define the kernel of U as

ker U =
⋃

{V ∈ ClopUp(X) | V � U}.

(3) We call X a continuous L-space provided kerU is dense in U for each
U ∈ ClopUp(X).

(4) An L-morphism f : X1 → X2 is proper if f−1(ker U) ⊆ ker f−1(U) for all
U ∈ ClopUp(X2).

(5) Let ConLPries be the category of continuous L-spaces and proper L-
morphisms.

Theorem 3.10 ([12, Section 5]). ConLPries is equivalent to LKSob and dually
equivalent to ConFrm.

As a corollary, we obtain Hofmann-Lawson duality that ConFrm is du-
ally equivalent to LKSob (see Theorem 2.10(1)). We thus arrive at the follow-
ing diagram which commutes up to natural isomorphism, where ↔ represents
equivalence.

ConFrm

ConLPries LKSob

We next describe Priestley spaces of stably continuous and stably com-
pact frames. For the next definition see [12, Section 6]. The notion of L-compact
goes back to [34,35].

Definition 3.11.
(1) (a) An L-space X is kernel-stable if ker(U ∩ V ) = ker U ∩ ker V for all

U, V ∈ ClopUp(X),
(b) A stably continuous L-space is a kernel-stable continuous L-space.
(c) Let StCLPries be the full subcategory of ConLPries consisting of

stably continuous L-spaces.
(2) (a) An L-space X is L-compact if X = ker X.
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(b) A stably compact L-space is an L-compact stably continuous L-
space.

(c) Let StKLPries be the full subcategory of StCLPries consisting of sta-
bly compact L-spaces.

Theorem 3.12 ([12, Section 6]).
(1) StCLPries is equivalent to StLKSp and dually equivalent to StCFrm.
(2) StKLPries is equivalent to StKSp and dually equivalent to StKFrm.

As a consequence, we obtain the following well-known dualities for sta-
bly continuous frames: StCFrm is dually equivalent to StLKSp (see Theorem
2.10(2)) and StKFrm is dually equivalent to StKSp (see Theorem 2.10(3)).

StCFrm

StCLPries StLKSp

StKFrm

StKLPries StKSp

We conclude this section by describing Priestley spaces of compact regular
frames. The next definition appeared in [9, Section 3] and [12, Section 7].
The notion of regular L-space goes back to [34].

Definition 3.13. Let X be an L-space.
(1) For U, V ∈ ClopUp(X), define V ≺ U provided ↓V ⊆ U .
(2) For U ∈ ClopUp(X), define the regular part of U as

reg U =
⋃

{V ∈ ClopUp(X) | V ≺ U}.

(3) We call X a regular L-space if reg U is dense in U for each U ∈ ClopUp(X).
(4) We call X a compact regular L-space if X is a regular L-space that is

L-compact.
(5) Let KRLPries be the full subcategory of LPries consisting of compact

regular L-spaces.

Remark 3.14. Every L-morphism between compact regular L-spaces is proper
(see [12, Theorem 7.18(2)]), and every compact regular L-space is a stably
compact L-space (see [12, Theorem 7.17]). Thus, KRLPries is a full subcategory
of StKLPries.

Theorem 3.15 ([12, Section 7]). KRLPries is equivalent to KHaus and dually
equivalent to KRFrm.

As a corollary, we obtain Isbell duality that KRFrm is dually equivalent
to KHaus (see Theorem 2.10(4)).

KRFrm

KRLPries KHaus
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Figure 5. Equivalences and dual equivalences between cate-
gories of continuous frames, continuous L-spaces, and locally
compact sober spaces

We thus have the diagram in Figure 5. The categories of continuous L-
spaces are listed in Table 5.

In what follows, we will obtain a similar picture of equivalences and dual
equivalences when the above categories of continuous frames are replaced by
the corresponding full subcategories of algebraic frames.

4. Priestley duality for algebraic frames

In this section we describe algebraic frames in the language of Priestley spaces.
We then connect the Priestley duals of algebraic frames with compactly based
sober spaces to derive the well-known duality between AlgFrm and KBSob
mentioned in Theorem 2.12(1).

Let X be an L-space and Y the spatial part of X. We recall (see [11,
Definition 5.2]) that a closed upset F of X is a Scott upset if F = ↑(F ∩ Y ).
We have the following characterization of Scott upsets, where we write min F
for the set of minimal points of F .

Lemma 4.1 ([11, Lemma 5.1]). Let X be an L-space and let F be a closed upset
of X.
(1) F is a Scott upset.
(2) min F ⊆ Y .
(3) F ⊆ cl U =⇒ F ⊆ U for each open upset U of X.

We denote by ClopSUp(X) the collection of all clopen Scott upsets of X.

Definition 4.2. Let X be an L-space.

Table 5. Categories of continuous L-spaces

Category Objects Morphisms

ConLPries Continuous L-spaces Proper L-morphisms
StCLPries Stably continuous L-spaces Proper L-morphisms
StKLPries Stably compact L-spaces Proper L-morphisms
KRLPries Compact regular L-spaces L-morphisms
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(1) For U ∈ ClopUp(X), define the core of U as

core U =
⋃

{V ⊆ U | V ∈ ClopSUp(X)}.

(2) Call X an algebraic L-space provided coreU is dense in U for every
U ∈ ClopUp(X).

Lemma 4.3. Let X be an L-space and U, V ∈ ClopUp(X).
(1) core U ⊆ ker U ⊆ U .
(2) U ⊆ V implies core U ⊆ core V .
(3) If X is an algebraic L-space, then X is a continuous L-space.
(4) U is a Scott upset iff core U = U .

Proof. (1) Suppose x ∈ core U . Then there is V ∈ ClopSUp(X) such that
x ∈ V ⊆ U . Let W be an open upset such that U ⊆ cl W . Then V ⊆ cl W ,
so V ⊆ W by Lemma 4.1. Hence, V � U . Therefore, x ∈ ker U , and so
core U ⊆ ker U . That ker U ⊆ U follows from [12, Lemma 5.2(1)].

(2) This is obvious from the definition of the core.
(3) Let U ∈ ClopUp(X). Since X is an algebraic L-space, core U is dense

in U . Therefore, ker U is dense in U by (1). Thus, X is a continuous L-space.
(4) First suppose that U is a Scott upset. By (1), core U ⊆ U . Since U

is a Scott upset, U ⊆ core U . Thus, coreU = U . Conversely, suppose that
U = core U . Since U is compact, there are clopen Scott upsets V1, . . . , Vn ⊆ U
such that U = V1 ∪ · · · ∪ Vn. Because a finite union of Scott upsets is a Scott
upset, U is a Scott upset. �

We next connect algebraic frames with algebraic L-spaces. Let L be a
frame, XL its Priestley space, and a ∈ L. To simplify notation, we write
core(a) for coreϕ(a) and ker(a) for ker ϕ(a).

Lemma 4.4 ([12, Lemma 6.10]). Let L be a frame and XL its Priestley space.
For a ∈ L, the following are equivalent.
(1) a is compact.
(2) ker(a) = ϕ(a).
(3) ϕ(a) is a Scott upset.

In particular, L is compact iff XL is L-compact iff min XL ⊆ YL.

Theorem 4.5. Let L be a frame and XL its Priestley space.
(1) For a ∈ L, we have a =

∨{b ∈ K(L) | b ≤ a} iff core(a) is dense in ϕ(a).
(2) L is an algebraic frame iff XL is an algebraic L-space.

Proof. (1) It is well known (see, e.g., [7, Lemma 2.3]) that

ϕ
(∨

S
)

= cl
(⋃

{ϕ(s) | s ∈ S}
)

for each S ⊆ L. Therefore, by Lemma 4.4 we have a =
∨{b ∈ K(L) | b ≤ a}

iff

ϕ(a) = cl
(⋃

{ϕ(b) ∈ ClopSUp(XL) | ϕ(b) ⊆ ϕ(a)}
)

= cl(core(a)).

(2) follows from (1). �
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We now turn to morphisms between algebraic L-spaces.

Definition 4.6.
(1) We call an L-morphism f : X1 → X2 between L-spaces coherent if

f−1(core U) ⊆ core f−1(U) for all U ∈ ClopUp(X2).

(2) Let AlgLPries be the category of algebraic L-spaces and coherent L-
morphisms.

It is easy to see that the identity morphism is a coherent L-morphism
and that the composition of two coherent L-morphisms is coherent. Therefore,
AlgLPries is indeed a category. We show that AlgLPries is a full subcategory of
ConLPries. For this we need the following lemmas.

Lemma 4.7 ([12, Lemma 4.14(1)]). Let X be an L-space and U an open upset
of X. Then cl U ∩ Y = U ∩ Y .

Lemma 4.8. Let X be a continuous L-space and U ∈ ClopUp(X). The follow-
ing are equivalent.
(1) ker U = core U .
(2) core U is dense in U .
(3) For each y ∈ U ∩ Y , there is V ∈ ClopSUp(X) such that y ∈ V ⊆ U .
(4) For each Scott upset F ⊆ ker U , there is V ∈ ClopSUp(X) such that

F ⊆ V ⊆ U .

Proof. (1)⇒(2) Since X is a continuous L-space, ker U is dense in U . Therefore,
ker U = core U implies that core U is dense in U .

(2)⇒(3) Suppose that y ∈ U ∩ Y . Because U = cl(core U), we have
y ∈ cl(core U) ∩ Y . Since coreU is an open upset, cl(core U) ∩ Y = core U ∩ Y
by Lemma 4.7. Therefore, y ∈ core U , and so there is V ∈ ClopSUp(X) such
that y ∈ V ⊆ U .

(3)⇒(4) Let F ⊆ ker U be a Scott upset and y ∈ F ∩ Y . Then y ∈ ker U ,
so y ∈ U by Lemma 4.3(1). Therefore, by (3), there is Vy ∈ ClopSUp(X) such
that y ∈ Vy ⊆ U . Thus,

F =
⋃

{↑y | y ∈ F ∩ Y } ⊆
⋃

{Vy | y ∈ F ∩ Y } ⊆ U.

Because F is closed, it is compact. Therefore, since a finite union of clopen
Scott upsets is a clopen Scott upset, there is V ∈ ClopSUp(X) such that
F ⊆ V ⊆ U .

(4)⇒(1) By Lemma 4.3(1), core U ⊆ ker U . For the reverse inclusion, it
suffices to show that V � U implies there is W ∈ ClopSUp(X) such that
V ⊆ W ⊆ U . Let V � U . Then there is a Scott upset F such that V ⊆ F ⊆ U
(see, e.g., [12, Lemma 5.7]). But U = cl(ker U), so F ⊆ ker U by Lemma 4.1.
Therefore, by (4), there is W ∈ ClopSUp(X) such that F ⊆ W ⊆ U , and
hence V ⊆ W ⊆ U . �

Lemma 4.9. Let f : X1 → X2 be an L-morphism between L-spaces.
(1) If f is proper and X1 is an algebraic L-space, then f is coherent.
(2) If f is coherent and X2 is an algebraic L-space, then f is proper.
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(3) If X1 and X2 are algebraic L-spaces, then f is coherent iff f is proper.

Proof. (1) Let U ∈ ClopUp(X2). Then

f−1(core U) ⊆ f−1(ker U) by Lemma 4.3(1)

⊆ ker f−1(U) since f is proper

= core f−1(U) by Lemmas 4.3(3) and 4.8(1).

(2) Let U ∈ ClopUp(X2). Then

f−1(ker U) = f−1(core U) by Lemmas 4.3(3) and 4.8(1)

⊆ core f−1(U) since f is coherent

⊆ ker f−1(U) by Lemma 4.3(1).

(3) follows from (1) and (2). �

Putting Lemmas 4.3(3) and 4.9(3) together, we obtain the following:

Theorem 4.10. AlgLPries is a full subcategory of ConLPries.

We are ready to prove the first main result of this section.

Theorem 4.11. AlgFrm is dually equivalent to AlgLPries.

Proof. By Remark 2.2, AlgFrm is a full subcategory of ConFrm. By Theorem
4.10, AlgLPries is a full subcategory of ConLPries. Thus, the result follows from
Theorems 3.10 and 4.5(2).

Finally, we connect AlgLPries with KBSob.

Lemma 4.12. Let X be an SL-space, Y its spatial part, and U ⊆ X. Then
U ∈ ClopSUp(X) iff there is a compact open set V of Y such that cl V = U .

Proof. By [11, Theorem 5.7], the poset of Scott upsets of X is isomorphic to
the poset of compact saturated sets of Y . The isomorphism is obtained by
sending a Scott upset F ⊆ X to the compact saturated set F ∩ Y , and a
compact saturated set K ⊆ Y to the Scott upset ↑K.

(⇒) Suppose that U is a clopen Scott upset. Then V := U ∩ Y is a
compact saturated subset of Y . Moreover, V is an open subset of Y since
U ∈ ClopUp(X). Furthermore, clV = U by Remark 3.6(2) because X is an
SL-space.

(⇐) Suppose there is a compact open set V of Y such that cl V = U .
Then ↑V is a Scott upset of X. Since V is open and X is an SL-space, there
is U ′ ∈ ClopUp(X) such that V = U ′ ∩ Y and clV = U ′ (see Remark 3.6(2)).
Therefore, U = cl V = U ′, and so U is a clopen upset of X. Moreover,

U = ↑U = ↑ cl V = cl ↑V = ↑V,

where the third equality follows from [19, Theorem 3.1.2] since X is an Esakia
space. Thus, U is a Scott upset. �

Theorem 4.13. Let X be an SL-space and Y its spatial part. Then X is an
algebraic L-space iff Y is a compactly based sober space.
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Proof. Since the spatial part of an L-space is always sober (see, e.g., [12,
Lemma 4.11]), it is sufficient to show that X is an algebraic L-space iff Y
is compactly based. First suppose that X is an algebraic L-space. Let V ⊆ Y
be open and y ∈ V . Set U = cl V . Then U is a clopen upset of X by Remark
3.6(2). Moreover, it follows from [12, Lemma 4.14(2)] that

U ∩ Y = clV ∩ Y = V,

so y ∈ U ∩ Y . By Lemmas 4.3(3) and 4.8(3), there is W ∈ ClopSUp(X) such
that y ∈ W ⊆ U . Therefore, y ∈ W ∩ Y ⊆ U ∩ Y = V . It follows from the
proof of Lemma 4.12 that W ∩ Y is a compact open subset of Y . Thus, Y is
compactly based.

Conversely, suppose that Y is compactly based and U ∈ ClopUp(X).
Since Y is locally compact, X is a continuous L-space by Theorem 3.10. There-
fore, by Lemma 4.8(3), it suffices to show that for each y ∈ U ∩ Y there is
V ∈ ClopSUp(X) such that y ∈ V ⊆ U . Because U ∩ Y is an open subset
of Y and Y is compactly based, there is a compact open K ⊆ Y such that
y ∈ K ⊆ U ∩ Y . Therefore, cl K ∈ ClopSUp(X) by Lemma 4.12. Moreover,
y ∈ cl K ⊆ cl(U ∩ Y ) = U , where in the last equality we use that X is an
SL-space. Thus, X is an algebraic L-space. �

By Theorem 4.10, AlgLPries is a full subcategory of ConLPries. By Remark
2.9, KBSob is a full subcategory of LKSob. Thus, as an immediate consequence
of Theorems 3.10 and 4.13, we obtain the following:

Corollary 4.14. AlgLPries is equivalent to KBSob.

Putting together Theorem 4.11 and Corollary 4.14, we obtain Theorem
2.12(1) that AlgFrm is dually equivalent to KBSob.

5. Priestley duality for arithmetic, coherent, and Stone frames

In this final section we describe Priestley duals of arithmetic, coherent, and
Stone frames. We also connect them to stably compactly based, spectral,
and Stone spaces, thus obtaining an alternative proof of Theorem 2.12(2,3,4).
We conclude the paper by pointing out a connection to Priestley duality for
bounded distributive lattices and Stone duality for boolean algebras.

5.1. Arithmetic frames

We recall (see Definition 3.11(1a)) that an L-space X is kernel-stable provided
ker(U ∩ V ) = ker U ∩ ker V for all U, V ∈ ClopUp(X).

Definition 5.1.
(1) An arithmetic L-space is a kernel-stable algebraic L-space.
(2) Let AriLPries be the full subcategory of AlgLPries consisting of arithmetic

L-spaces.

Lemma 5.2. Let X be an algebraic L-space. Then X is an arithmetic L-space
iff U1 ∩ U2 ∈ ClopSUp(X) for every U1, U2 ∈ ClopSUp(X).
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Proof. For the left-to-right implication, let U1, U2 ∈ ClopSUp(X). It follows
from Lemma 4.4 that ker U1 = U1 and ker U2 = U2. Therefore, since X is
kernel-stable,

ker(U1 ∩ U2) = kerU1 ∩ ker U2 = U1 ∩ U2.

Thus, U1 ∩ U2 ∈ ClopSUp(X) using Lemma 4.4 again.
For the right-to-left implication, let U1, U2 ∈ ClopUp(X). It suffices to

show that for each W ∈ ClopUp(X) we have

W ⊆ ker U1 ∩ ker U2 ⇐⇒ W ⊆ ker(U1 ∩ U2).

Since W is compact, by the assumption that V1, V2 ∈ ClopSUp(X) implies
V1 ∩ V2 ∈ ClopSUp(X) and Lemma 4.8,

W ⊆ ker U1 ∩ ker U2 ⇐⇒ W ⊆ core U1 ∩ core U2

⇐⇒ ∃V1, V2 ∈ ClopSUp(X) : W ⊆ V1 ⊆ U1 and
W ⊆ V2 ⊆ U2

⇐⇒ ∃V ∈ ClopSUp(X) : W ⊆ V ⊆ U1 ∩ U2

⇐⇒ W ⊆ core(U1 ∩ U2)

⇐⇒ W ⊆ ker(U1 ∩ U2). �

Lemma 5.3. Let Y be a compactly based sober space. Then Y is stably locally
compact iff Y is stably compactly based.

Proof. The left-to-right implication is trivial. For the right-to-left implication,
let A,B ⊆ Y be compact saturated. Since Y is compactly based, every com-
pact saturated set is an intersection of compact open sets (see Remark 2.9).
Therefore, A ∩ B =

⋂ F , where

F = {U ∩ V | U, V compact open with A ⊆ U and B ⊆ V }.

Since Y is stably compactly based, F is closed under finite intersections. Thus,
the Hofmann-Mislove Theorem (see, e.g., [20, Corollary II−1.22]) implies that⋂ F is compact. Consequently, A ∩ B is compact. �

Theorem 5.4. Let L be an algebraic frame, XL its Priestley space, and YL the
spatial part of XL. The following are equivalent.
(1) L is an arithmetic frame.
(2) XL is an arithmetic L-space.
(3) YL is a stably compactly based space.

Proof. Since L is an algebraic frame, XL is an algebraic L-space by Theorem
4.5(2), and hence YL is a compactly based sober space by Theorem 4.13.

(1)⇔(2) Let L be an arithmetic frame and ϕ(a), ϕ(b) ∈ ClopSUp(XL).
Then a, b ∈ K(L) by Lemma 4.4. Since L is an arithmetic frame, a∧b ∈ K(L).
Therefore, ϕ(a) ∩ ϕ(b) = ϕ(a ∧ b) is a Scott upset, again by Lemma 4.4. Thus,
XL is an arithmetic L-space by Lemma 5.2.

Conversely, let XL be an arithmetic L-space and a, b ∈ K(L). By Lemma
4.4, ϕ(a) and ϕ(b) are clopen Scott upsets. Therefore, ϕ(a∧ b) = ϕ(a)∩ϕ(b) is
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a Scott upset by Lemma 5.2. Thus, a∧ b ∈ K(L), again by Lemma 4.4. Hence,
L is an arithmetic frame.

(2)⇔(3) Since XL is an algebraic L-space, XL is an arithmetic L-space iff
XL is a stably continuous L-space by Lemma 5.2. But XL is a stably continuous
L-space iff YL is a stably locally compact space by [12, Theorem 6.7]. However,
since YL is a compactly based sober space, YL is stably locally compact iff YL

is stably compactly based by Lemma 5.3. Thus, XL is an arithmetic L-space
iff YL is a stably compactly based space. �

As a consequence of Theorem 4.11, Corollary 4.14, and Theorem 5.4, we
arrive at the first main result of this section:

Theorem 5.5. The category AriLPries is equivalent to StKBSp and dually equiv-
alent to AriFrm.

As a corollary we obtain Theorem 2.12(2), which states that AriFrm is
dually equivalent to StKBSp.

5.2. Coherent frames

We next turn our attention to Priestley duals of coherent frames. Since co-
herent frames are exactly compact arithmetic frames, we obtain that Priestley
duals of coherent frames are exactly arithmetic L-spaces that are L-compact
(see Lemma 4.4). We then connect L-compact arithmetic L-spaces with spec-
tral spaces to obtain the well-known duality between CohFrm and Spec.

Definition 5.6.
(1) A coherent L-space is an L-compact arithmetic L-space.
(2) Let CohLPries be the full subcategory of AriLPries consisting of coherent

L-spaces.

Lemma 5.7 ([12, Lemma 6.15]). Let X be an SL-space and Y its spatial part.
Then X is L-compact iff Y is compact.

Theorem 5.8. Let L be an algebraic frame, XL its Priestley space, and YL the
spatial part of XL. The following are equivalent.
(1) L is a coherent frame.
(2) XL is a coherent L-space.
(3) YL is a spectral space.

Proof. (1)⇔(2) L is a coherent frame iff L is a compact arithmetic frame.
By Lemma 4.4 and Theorem 5.4, this is equivalent to XL being a coherent
L-space.

(2)⇔(3) By Lemma 5.7 and Theorem 5.4, XL is a coherent L-space iff
YL is a compact stably compactly based space, hence a spectral space. �

As a consequence of Theorems 5.5 and 5.8, we obtain the second main
result of this section:

Corollary 5.9. The category CohLPries is equivalent to Spec and dually equiv-
alent to CohFrm.

As a corollary we obtain Theorem 2.12(3), which states that CohFrm is
dually equivalent to Spec.
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5.3. Stone frames

Finally, we describe Priestley duals of Stone frames. Stone frames are charac-
terized by having enough complemented elements. In the language of Priest-
ley spaces, complemented elements correspond to clopen upsets that are also
downsets (see, e.g., [9, Lemma 6.1]).

Let X be a Priestley space. Following [9, p. 377], we call a subset of X a
biset if it is both an upset and a downset. Let ClopBi(X) be the collection of
clopen bisets of X.

Definition 5.10. Let X be an L-space.
(1) For U ∈ ClopUp(X), define the center of U as

cen U =
⋃

{V ∈ ClopBi(X) | V ⊆ U}.

(2) We call X a zero-dimensional L-space if cen U is dense in U for every
U ∈ ClopUp(X).

(3) A Stone L-space is a zero-dimensional L-space that is L-compact.
(4) Let StoneLPries be the full subcategory of LPries consisting of Stone L-

spaces.

Remark 5.11. In [9, Definition 6.2], the center of a clopen upset U is called
the biregular part of U .

Lemma 5.12. Let X be an L-space and U ∈ ClopUp(X).
(1) cen U ⊆ reg U .
(2) If X is a zero-dimensional L-space, then X is a regular L-space.
(3) If X is a Stone L-space, then X is a compact regular L-space.

Proof. (1) Suppose x ∈ cen U . Then there is V ∈ ClopBi(X) with x ∈ V ⊆ U .
Therefore, ↓↑x ⊆ U , so x ∈ reg U by [12, Lemma 7.3(1)].

(2) Suppose U ∈ ClopUp(X). Since X is a zero-dimensional L-space,
cen U is dense in U . But then reg U is dense in U by (1). Thus, X is a regular
L-space.

(3) This follows from (2). �

As an immediate consequence, we obtain that StoneLPries is a full subcat-
egory of KRLPries. We proceed to show that StoneLPries is a full subcategory
of CohLPries.

Lemma 5.13. Let X be a Stone L-space.
(1) ClopSUp(X) = ClopBi(X).
(2) cen U = reg U = core U for each U ∈ ClopUp(X).

Proof. (1) Since X is a Stone L-space, it is a compact regular L-space by
Lemma 5.12(3). Therefore, Scott upsets are exactly closed bisets by [12, Lemma
7.15(4)], and the result follows.

(2) That cen U ⊆ reg U follows from Lemma 5.12(1). We show that
reg U ⊆ core U . Let x ∈ reg U . Then there is V ∈ ClopUp(X) such that
x ∈ V and ↓V ⊆ U . Hence, ↓x ⊆ U , and therefore ↑↓x ⊆ U . But since X
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is L-compact, min(↓x) ⊆ min X ⊆ Y by Lemma 4.4, and so ↑↓x is a Scott
upset by Lemma 4.1. Because X is an algebraic L-space, cl core U = U . Thus,
↑↓x ⊆ core U by Lemma 4.1. Finally, we show that coreU = cen U . For this it
suffices to show that for each clopen upset V we have V ⊆ cen U iff V ⊆ core U .
Since V is compact, finite unions of bisets are bisets, and finite unions of Scott
upsets are Scott upsets, (1) implies

V ⊆ cen U ⇐⇒ ∃W ∈ ClopBi(X) : V ⊆ W ⊆ U

⇐⇒ ∃W ∈ ClopSUp(X) : V ⊆ W ⊆ U

⇐⇒ V ⊆ core U. �

Theorem 5.14. StoneLPries is a full subcategory of CohLPries.

Proof. Every Stone L-space is a coherent L-space by Lemma 5.13(2). Also,
since StoneLPries is a full subcategory of KRLPries, every L-morphism be-
tween Stone L-spaces is a proper L-morphism by [12, Theorem 7.18(2)]. There-
fore, every such morphism is a coherent L-morphism by Lemma 4.9(3). Thus,
StoneLPries is a full subcategory of CohLPries. �

In [9, Theorem 6.3(1)] it is shown that Priestley duals of zero-dimensio-
nal frames are exactly zero-dimensional L-spaces. We connect zero-dimensional
L-spaces to zero-dimensional topological spaces.

Lemma 5.15. Let X be an L-space and Y its spatial part.
(1) If U ∈ ClopBi(X), then U ∩ Y is clopen in Y .
(2) If X is an SL-space and V ⊆ Y is clopen, then there is U ∈ ClopBi(X)

such that V = U ∩ Y .

Proof. (1) This is immediate.
(2) Let V ⊆ Y be clopen. Since V is open, there is U ∈ ClopUp(X) such

that V = U ∩ Y and clV = U (see Remark 3.6(2)). Similarly, because V is
closed, there is W ∈ ClopUp(X) such that Y \V = W ∩ Y and cl(Y \V ) = W .
Since V, Y \V are open in Y , we have cl(V ) ∩ cl(Y \ V ) = cl(V ∩ (Y \ V )) by
[12, Lemma 4.15]. Therefore, U ∩ W = cl(V ) ∩ cl(Y \V ) = ∅. Also,

U ∪ W = cl V ∪ cl(Y \V ) = cl(V ∪ (Y \V )) = cl Y = X.

Thus, U = X\W , and hence U ∈ ClopBi(X). �
Theorem 5.16. Let X be an L-space and Y its spatial part.
(1) If X is a zero-dimensional L-space, then Y is zero-dimensional.
(2) If X is an SL-space, then X is a zero-dimensional L-space iff Y is zero-

dimensional.

Proof. (1) Suppose X is a zero-dimensional L-space. Let V ⊆ Y be open and
y ∈ V . Then there is U ∈ ClopUp(X) such that U ∩ Y = V . Since cen U is
dense in U , we have U ∩Y = cl(cen U)∩Y = cen U ∩Y , where the last equality
follows from Lemma 4.7 because cen U is an open upset of X. Therefore, there
is W ∈ ClopBi(X) such that y ∈ W ⊆ U . Thus, y ∈ W ∩ Y ⊆ V and W ∩ Y
is clopen in Y by Lemma 5.15(1). Consequently, Y is zero-dimensional.
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(2) The left-to-right implication follows from (1). For the converse, sup-
pose Y is zero-dimensional. Let U ∈ ClopUp(X). Since X is an SL-space,
U ∩ Y is dense in U . Therefore, it suffices to show that U ∩ Y ⊆ cen U . Let
y ∈ U ∩ Y . Since U ∈ ClopUp(X), we have that U ∩ Y is open in Y . Because
Y is zero-dimensional, there is clopen V ⊆ Y such that y ∈ V ⊆ U ∩ Y . Since
V is clopen in Y , Lemma 5.15(2) implies that there is W ∈ ClopBi(X) such
that V = W ∩Y . Because X is an SL-space, cl V = W , and hence y ∈ W ⊆ U .
Thus, y ∈ cen U . �

Corollary 5.17. Let L be a frame, XL its Priestley space, and YL the spatial
part of XL. The following are equivalent.
(1) L is a zero-dimensional frame.
(2) XL is a zero-dimensional L-space.

If in addition L is spatial, then (1) and (2) are equivalent to
(3) YL is a zero-dimensional space.

Proof. The equivalence (1)⇔(2) is shown in [9, Theorem 6.3(1)], and (2)⇔(3)
follows from Theorem 5.16(2). �

Corollary 5.18. Let L be a frame, XL its Priestley space, and YL the spatial
part of XL. The following are equivalent.
(1) L is a Stone frame.
(2) XL is a Stone L-space.

If in addition L is spatial, then (1) and (2) are equivalent to
(3) YL is a Stone space.

Proof. (1)⇔(2) Apply Lemma 4.4 and Corollary 5.17.
(2)⇔(3) Apply Lemma 5.7 and Corollary 5.17. �

As an immediate consequence, we arrive at the last main result of this
section:

Corollary 5.19. StoneLPries is equivalent to Stone and dually equivalent to
StoneFrm.

Proof. This follows from Corollaries 5.9 and 5.18 and the observation that
StoneFrm, StoneLPries, and Stone are full subcategories of CohFrm, CohLPries,
and Spec, respectively (see Remark 2.7, Theorem 5.14 and Remark 2.9). �

Theorem 2.12(4), which states that StoneFrm is dually equivalent to
Stone, is now immediate from the above corollary.

Remark 5.20. Let L be a frame and XL its Priestley space. As we saw in
this paper, there are various maps from the clopen upsets of XL to the open
upsets of XL, and the corresponding density conditions are responsible for
various properties of L. In particular,

• L is continuous iff kerU is dense in U for each U ∈ ClopUp(X);
• L is algebraic iff core U is dense in U for each U ∈ ClopUp(X);
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Figure 6. Equivalences and dual equivalences between var-
ious categories of algebraic frames, algebraic L-spaces, and
compactly based sober spaces

• L is regular iff reg U is dense in U for each U ∈ ClopUp(X);
• L is zero-dimensional iff cen U is dense in U for each U ∈ ClopUp(X).

The strength of these properties of frames is then described by how these maps
interact. For example, core U ⊆ ker U for each U ∈ ClopUp(X) indicates that
every algebraic frame is continuous, etc.

To summarize, we have the diagram in Figure 6, where we use the same
notation as in the previous diagrams. An overview of the introduced categories
of Priestley spaces is given in Table 6, where the numbers in parentheses
indicate the corresponding definitions in the text. The relevant categories of
frames and spaces are described in Tables 2 and 4.

We conclude the paper by connecting the results obtained above with
Priestley duality for bounded distributive lattices and Stone duality for boole-
an algebras. Let D be a bounded distributive lattice, XD its Priestley space,
and ϕD : D → ClopUp(XD) the Stone map. We denote by πD the topology of
XD and by τD the topology of open upsets of XD. Then {ϕD(a) | a ∈ D} is a
basis for τD. Moreover, since {ϕD(a) \ ϕD(b) | a, b ∈ D} is a basis for πD, we
see that πD is the patch topology of τD.

Let DLat be the category of bounded distributive lattices and bounded
lattice homomorphisms. By the well-known equivalence between DLat and
CohFrm (see, e.g., [29, p. 65]), each bounded distributive lattice D is isomorphic
to the lattice K(L) of compact elements of a coherent frame L. Let XD be the
Priestley space of D, XL the Priestley space of L, and YL the spatial part of
XL. Identifying D with K(L), the map P �→ P ∩D is an isomorphism between

Table 6. Categories of algebraic L-spaces

Category Objects Morphisms

AlgLPries Algebraic L-spaces (4.2) Coherent L-morphisms (4.6)
AriLPries Arithmetic L-spaces (5.1) Coherent L-morphisms
CohLPries Coherent L-spaces (5.6) Coherent L-morphisms
StoneLPries Stone L-spaces (5.10) L-morphisms (3.1)
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(YL,⊆) and (XD,⊆). However, πD is different from the subspace topology on
YL induced by πL. Indeed, πD is the patch topology of τD. By identifying XD

with YL, we have ϕD(a) = ϕL(a) ∩ YL for each a ∈ D. Since ClopSUp(XL)
corresponds to D (see Lemma 4.4), πD is generated by the basis

{(U \ V ) ∩ YL | U, V ∈ ClopSUp(XL)}.

Thus, πD is the patch topology of the subspace topology on YL induced by τL.
We next show that this topology may not be the subspace topology induced
by πL.

Let D be a boolean algebra. Then XD is a Stone space and L is a Stone
frame. In this case, πD = τD, and hence XD is realized as YL with the sub-
space topology induced by τL. On the other hand, since each Stone frame is a
compact Hausdorff frame, YL = min XL (see, e.g., [12, Lemma 7.15(5)]). Thus,
YL is exactly the set of isolated points of XL, and so the subspace topology on
YL induced by πL is discrete. This shows that the restrictions of τL and πL to
YL are distinct, yielding that the operations of taking the patch topology and
the subspace topology may not commute.
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